

T-Save HTS-P / HTS-M Insulation fastener

Anchor version Benefits

T-Save HTS-P T-Save HTS-M

- Fastening in all base materials of category A, B, C, D and E
- Easy and fast to install
- Best insulation surface finish
- Heat transmission class 0,000 W/K

Base material

Concrete (non-cracked)

Solid brick

Hollow brick

Lightweight Aggregate concrete

Autoclaved aerated concrete

Other information

Fastening of insulation

European Technical Assessment

CE conformity

Approvals/Certificates

Description	Authority / Laboratory	No. / date of issue
European technical assessment a)	ZAG, Ljubljana	ETA-14/0400 / 2017-06-23

Basic loading data for short term acting loads e.g. wind (for a single anchor)

All data in this section applies to:

- Correct setting (see setting instruction)
- No edge distance and spacing influence
- Redundant fastenings in the base materials as specified in the tables
- Minimum base material thickness or greater
- Transmission of wind suction loads only
- Anchor and its plate is not exposed to UV-radiation for more than 6 weeks

1 Updated: Aug-18

Characteristic resistance (short term acting load)

Base material			T-Save HTS-P / T-Save HTS-M
Concrete ≥ C12/15	N_{Rk}	[kN]	0,9
Solid clay brick Mz 12/2,0	N_{Rk}	[kN]	0,9
Solid sand-lime brick KS 12/1,8	N_{Rk}	[kN]	0,9
Vertically perforated clay brick Hlz 20/1,6	N_{Rk}	[kN]	0,75 ^{a)}
Vertically perforated sand-lime brick KSL 12/1,4	N_{Rk}	[kN]	0,75 ^{a)}
Lighweight Aggregate Concrete ≥ LAC4 (raw density ≥ 1,4 kg/dm³)	N_{Rk}	[kN]	0,60
Autoclaved aerated concrete ≥ PP4 (raw density ≥ 0,5 kg/dm³)	N_{Rk}	[kN]	0,40

a) The value applies only for outer web thickness ≥ 20 mm, rotary drilling only

Design resistance (short term acting load)

Base material			T-Save HTS-P / T-Save HTS-M
Concrete ≥ C12/15	N_{Rd}	[kN]	0,45
Solid clay brick Mz 12/2,0	N_{Rd}	[kN]	0,45
Solid sand-lime brick KS 12/1,8	N_{Rd}	[kN]	0,45
Vertically perforated clay brick HIz 20/1,6	N_{Rd}	[kN]	0,375 ^{a)}
Vertically perforated sand-lime brick KSL 12/1,4	N_{Rd}	[kN]	0,375 ^{a)}
Lighweight Aggregate Concrete ≥ LAC4 (raw density ≥ 1,4 kg/dm³)	N_{Rd}	[kN]	0,30
Autoclaved aerated concrete ≥ PP4 (raw density ≥ 0,5 kg/dm³)	N_{Rd}	[kN]	0,20

a) The value applies only for outer web thickness ≥ 20 mm, rotary drilling only

Recommended loads (short term acting load)

Base material			T-Save HTS-P / T-Save HTS-M
Concrete ≥ C12/15	N_{Rec}	[kN]	0,3
Solid clay brick Mz 12/2,0	N_{Rec}	[kN]	0,3
Solid sand-lime brick KS 12/1,8	N_{Rec}	[kN]	0,3
Vertically perforated clay brick Hlz 20/1,6	N_{Rec}	[kN]	0,25 ^{a)}
Vertically perforated sand-lime brick KSL 12/1,4	N_{Rec}	[kN]	0,25 ^{a)}
Lighweight Aggregate Concrete ≥ LAC4 (raw density ≥ 1,4 kg/dm³)	N_{Rec}	[kN]	0,20
Autoclaved aerated concrete ≥ PP4 (raw density ≥ 0,5 kg/dm³)	N_{Rec}	[kN]	0,13

a) The value applies only for outer web thickness ≥ 20 mm, rotary drilling only

Updated: Aug-18 2

Recommended (short term) pull-through loads in different insulation materials a)

Base material	Thickness [mm]	Plate-Ø [mm]	Pull-through load [kN]
Expanded polystyrene EPS	60-100	≥ 60	0,15
Expanded polystyrene EPS	120-260	≥ 60	0,20
Mineral wool, type HD	60-260	≥ 60	0,15
Mineral wool, type WV	60-260	≥ 90	0,15 ^{b)}
Mineral wool, type lamella	60-260	≥ 140	0,167 ^{c)}

- a) Recommended values in case that the insulation material to be fixed is not covered by a European Technical Assessment (ETA) or any national approval document. If the ETICS to be fixed is covered by an ETA or any national approval document, the given pull-through resistance in the ETA or national approval document is applicable. The design of anchorages must be carried out in accordance to EAD330196-01-0604 and ETAG 004 or applicable national regulation under the responsibility of an engineer experienced in anchorages.
- b) HILTI slip-on plate HDT 90 must be used
- c) HILTI slip-on plate HDT 140 must be used

Basic provisions for fixing insulation on the bottom side of ceilings

All data in this section applies to

- Correct setting (see setting instruction)
- No edge distance and spacing influence
- Redundant fastening in non-cracked concrete
- Minimum base material thickness or greater
- Transmission of quasi-static permanent loads only
- Anchor and its plate is not exposed to UV-radiation for more than 6 weeks

Note: Each panel shall be supported by 4 anchors at least e.g. by T-joint fixing.

Recommended number of anchors for fixing panels to ceilings w/o consideration of wind load^a):

Specific panels weight	Number of anchors per m ²
EPS (≤30 kg/m³, TR≥100 kPa, 60mm≤thickness≤260)	
Mineral wool (≤120 kg/m³, TR≥3.5 kPa, 60mm≤thickness≤120mm	4
Mineral wool (≤150 kg/m³, TR≥3.5 kPa, 60mm≤thickness≤100mm	
Mineral wool (≤200 kg/m³, TR≥3.5 kPa, 60mm≤thickness≤70mm	5

These technical data are not covered by ETA-14/0400. They are based on a HILTI-internal assessment. A safety factor for dead load γ_F =1,35, a safety factor $\gamma_{M,EPS}$ =1,50, a safety factor $\gamma_{M,Mineralwool}$ =2,00 for material is considered.

Point thermal transmittance

Base material	Thickness [mm]	Point thermal transmittance χ [W/K]
Insulation	60-260	0,000

Plate Stiffness and plate capacity

Base material	Thickness	Capacity of plate	Plate stiffness
	[mm]	[kN]	[kN/mm]
Insulation	60-260	1,4	0,6

3 Updated: Aug-18

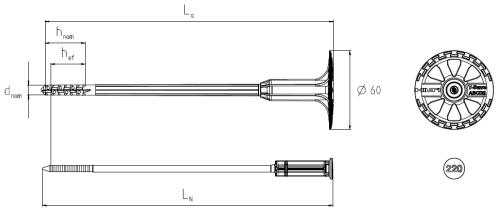
Service temperature range

	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range	0 °C to +40 °C	+24 °C	+40 °C

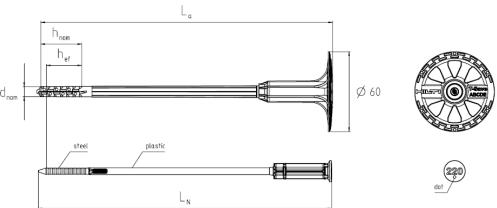
Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. because of diurnal cycling.

Maximum long term base material temperature


Long-term elevated base material temperatures are roughly constant over significant periods of time.

Materials

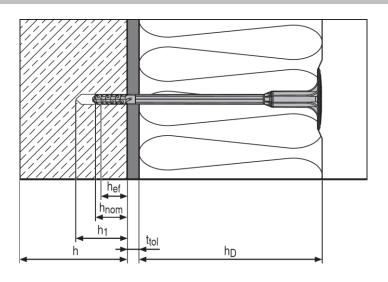

Material quality

Part		Material
Anchor sleeve	HTS-P and HTS-M	Polyethylene, black
Anchor plate	HTS-P und HTS-M	Polypropylene, white
Expansion pin	HTS-P	Polyamide, fiber reinforced 50%, black
Expansion pin	HTS-M	Expansion element: steel Shaft: polyamide, fiber reinforced 50%, black
Slip-on plate	HDT 90	Polypropylene, fiber reinforced, white
Slip-on plate	HDT 140	Polyamide, fiber reinforced, white

T-Save HTS-P

T-Save HTS-M

Updated: Aug-18 4


Anchor dimensions

			T-Save HTS-P / T-Save HTS-M
Diameter of sleeve	d_{nom}	[mm]	8
Minimum length of anchor body	L _{a,min}	[mm]	100
Maximum length of anchor body	L _{a,max}	[mm]	300
Minimum length of pin	$L_{N,min}$	[mm]	101
Maximum length of pin	L _{N,max}	[mm]	301

Anchor designations

		T-Save HTS-P / T-Save HTS-M
Expansion screw	Top of head	T-Save HTS-P: Anchor length L _a (e.g. "220")
·	·	T-Save HTS-M: Anchor length L _a (e.g. "220" and a dot •)
		Producer: HILTI
	Top of plate	Anchor type: T-Save
Plate		Base material categories: A, B, C, D, E
1 10.00		Nominal embedment depth: hnom=30 mm for base
	Bottom side of plate	material categories A, B, C, D, E
'		Nominal drill bit diameter: 8 mm

Setting information

Setting details:

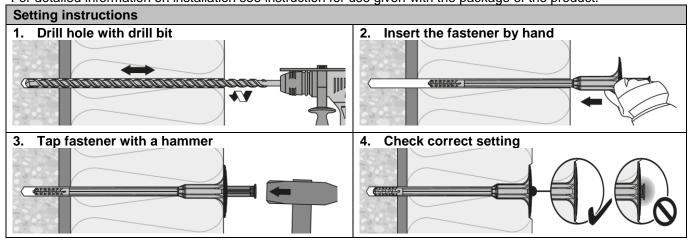
			T-Save HTS-P / T-Save HTS-M
Nominal diameter of drill bit	do	[mm]	8
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45
Depth of drill hole	h₁≥	[mm]	40
Effective anchorage depth	h _{ef}	[mm]	25
Overall embedment depth	h _{nom}	[mm]	30
Thickness of insulation	h⊳	[mm]	60 to 260
Maximum thickness of tolerance layer	t _{tol,max}	[mm]	L _a - h _{nom} - h _D ^{a)}
Installation temperature		[°C]	0 to +40
UV exposure			≤ 6 weeks

 L_a ... Anchor length, h_{nom} ... Overall embedment depth, h_{D} ... Thickness of insulation

5 Updated: Aug-18

T-Save HTS 8x220-P: L_a = 220mm; h_{nom} = 30mm; h_D = 180mm $t_{tol,max}$ = 220 - 30 - 180 = 10mm

Installation equipment


Anchor size	T-Save HTS-P / T-Save HTS-M
Rotary hammer	Corded: HILTI TE 2 – TE 7
Rotary naminer	Battery: HILTI TE2-A22, TE4-A22, TE6-A36
Installation	Hammer 500g to 1500g

Minimum edge distance, minimum spacing and minimum base material thickness

Millian eage distance, millian s			T-Save HTS-P / T-Save HTS-M
Minimum base material thickness	h _{min}	[mm]	100
Minimum spacing	Smin	[mm]	100
Minimum edge distance	C _{min}	[mm]	100
S _{min}	Cmin	→ S _{mi}	⊕ ⊕ min

Setting instruction*

*For detailed information on installation see instruction for use given with the package of the product.

Updated: Aug-18 6