

Allgemeine Bauartgenehmigung

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen: 29.10.2020 I 29-1.21.3-80/19

Nummer:

Z-21.3-2114

Antragsteller:

Hilti Deutschland AG Hiltistraße 2 86916 Kaufering

Geltungsdauer

vom: 29. Oktober 2020 bis: 29. Oktober 2025

Gegenstand dieses Bescheides:

Hilti HIT-HY 270 Metall-Injektionsdübel zur Verankerung in Mauerwerk unter Brandbeanspruchung

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich genehmigt. Dieser Bescheid umfasst vier Seiten und 17 Anlagen.

Allgemeine Bauartgenehmigung Nr. Z-21.3-2114

Seite 2 von 4 | 29. Oktober 2020

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen Bauartgenehmigung ist die Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- 2 Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Anwender des Regelungsgegenstandes sind, unbeschadet weitergehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- 7 Dieser Bescheid bezieht sich auf die von dem Antragsteller im Genehmigungsverfahren zum Regelungsgegenstand gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Genehmigungsgrundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.
- Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.

Z91484.20 1.21.3-80/19

Allgemeine Bauartgenehmigung

Nr. Z-21.3-2114

Seite 3 von 4 | 29. Oktober 2020

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Anwendungsbereich

Diese allgemeine Bauartgenehmigung regelt die Verankerung der Größen M 6 bis M12 des Injektionssystems Hilti HIT-HY 270 gemäß ETA-13/1036 vom 12. Dezember 2017 und des Injektionssystem Hilti HIT-HY 270 mit HAS-U gemäß ETA-19/0160 vom 13. August 2019 in Mauerwerk unter Brandbeanspruchung.

Die Verankerungen dürfen nur in den auf Anlage 4 angegebenen Mauersteinen ausgeführt werden.

Sie dürfen nicht in Fugen des Mauerwerks ausgeführt werden.

Das Injektionssystem Hilti HIT-HY 270 darf nur in trockenem Mauerwerk gesetzt werden und es darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Der Mauermörtel muss mindestens den Anforderungen an Mörtelklasse M 5 nach DIN EN 998-2:2017-02 entsprechen.

Das Mauerwerk darf verputzt oder unverputzt sein. Bei verputztem Mauerwerk muss eine Putzschicht aus Kalkgipsputz mit eine Mindestdicke von 12 mm vorhanden sein.

2 Bestimmungen für Planung, Bemessung und Ausführung

2.1 Planung

Die Verankerungen sind ingenieurmäßig zu planen. Unter Berücksichtigung der zu verankernden Lasten, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.

2.2 Bemessung

Die Verankerungen sind ingenieurmäßig zu bemessen.

Es sind nur Einzeldübel mit einem Achsabstand s ≥ scr (siehe Anlage 13, Tabelle 15) zu verwenden.

Folgende Nachweise sind zu führen:

$$F_{Ed,fi} \leq \frac{F_{Rk,fi}}{v_{Mfi}}$$

mit

 $F_{Rk,fi}$ Charakteristischer Feuerwiderstand für alle Lastrichtungen nach Anlage 14

bis 17

 $F_{Ed,fi}$ Bemessungswert der Einwirkung unter Brandbeanspruchung

 $\gamma_{M,fi}=1.0$

Die Bemessungswerte des Widerstandes gelten für alle Lastrichtungen unabhängig von der Versagensart.

Der Nachweis gilt für eine einseitige Brandbeanspruchung des Bauteils. Bei mehrseitiger Brandbeanspruchung darf der Nachweis nur geführt werden, wenn der Randabstand des Dübels $c \ge 300$ mm beträgt.

2.3 Ausführung

2.3.1 Montage

Die Montagekennwerte sind in Anlage 8 und 9 angegeben. Die Montage des Dübels erfolgt nach der Montageanweisung in den Anlagen 10 bis 13.

Z91484.20 1.21.3-80/19

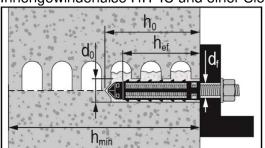
Allgemeine Bauartgenehmigung Nr. Z-21.3-2114

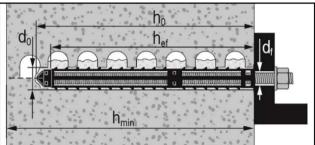
Seite 4 von 4 | 29. Oktober 2020

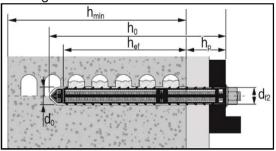
2.3.2 Kontrolle der Ausführung

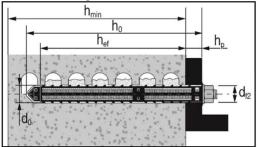
Bei der Herstellung von Verankerungen muss der mit der Verankerung von Dübeln betraute Unternehmer oder der von ihm beauftragte Bauleiter oder ein fachkundiger Vertreter des Bauleiters auf der Baustelle anwesend sein. Er hat für die ordnungsgemäße Ausführung der Arbeiten zu sorgen.

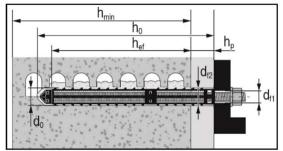
Während der Herstellung der Verankerungen sind Aufzeichnungen über den Nachweis der vorhandenen Druckfestigkeit des Mauerwerks und die ordnungsgemäße Montage der Dübel vom Bauleiter oder seinem Vertreter zu führen. Die Aufzeichnungen müssen während der Bauzeit auf der Baustelle bereitliegen und sind dem mit der Kontrolle Beauftragten auf Verlangen vorzulegen. Sie sind ebenso wie die Lieferscheine nach Abschluss der Arbeiten mindestens 5 Jahre vom Unternehmen aufzubewahren.

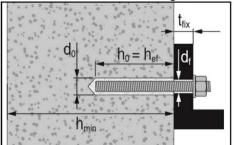

Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

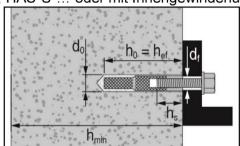

Z91484.20 1.21.3-80/19


Einbauzustand


Lochstein und Vollstein mit Gewindestange, HIT-V-..., HAS-U-... und einer Siebhülse HIT-SC oder mit Innengewindehülse HIT-IC und einer Siebhülse HIT-SC




Lochstein und Vollstein mit Gewindestange, HIT-V-..., HAS-U-... und mit zwei Siebhülsen HIT-SC zur Montage durch das Anbauteil und/oder durch eine nichttragende Schicht

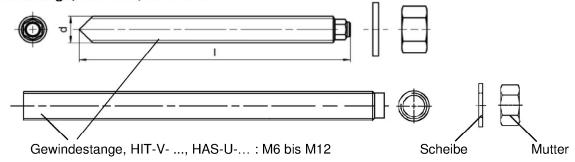


Vollstein mit Gewindestange, HIT-V-..., HAS-U-... oder mit Innengewindehülse HIT-IC

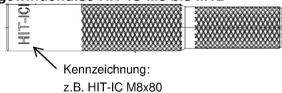
Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung

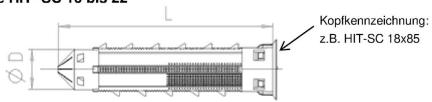
Einbauzustand

Injektionsmörtel Hilti HIT-HY 270: Hybridsystem mit Zuschlag


330 ml und 500 ml

Statikmischer Hilti HIT-RE-M


Gewindestange, HIT-V-..., HAS-U-...


Handelsübliche Gewindestangen mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle 1
- Abnahmeprüfzeugnis 3.1 gemäß DIN EN 10204:2005-01. Die Dokumente sind aufzubewahren.
- Markierung der Setztiefe

Innengewindehülse HIT-IC M8 bis M12

Siebhülse HIT- SC 16 bis 22

Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung

Injektionsmörtel / Statikmischer / Stahlelemente / Siebhülsen

Tabelle 1 Werkstoffe

Bezeichnung	Werkstoff
Stahlteile aus verzinkten	n Stahl
Gewindestange,	Festigkeitsklasse 5.8, f _{uk} = 500 N/mm ² , f _{yk} = 400 N/mm ² ,
HAS-U-5.8(F),	Bruchdehnung (I ₀ =5d) > 8% duktil
HIT-V-5.8(F)	Galvanisch verzinkt ≥ 5 μm, (F) Feuerverzinkt ≥ 45 μm
Gewindestange,	Festigkeitsklasse 8.8, f _{uk} = 800 N/mm ² , f _{yk} = 640 N/mm ² ,
HAS-U-8.8(F)	Bruchdehnung (I ₀ =5d) > 8% duktil
HIT-V-8.8(F)	Galvanisch verzinkt \geq 5 μ m, (F) Feuerverzinkt \geq 45 μ m
Innengewindehülse HIT-	$f_{uk} = 490 \text{ N/mm}^2$; $f_{yk} = 390 \text{ N/mm}^2$
Innengewindendise mm-	Bruchdehnung (I ₀ =5d) > 8% duktil
IC .	Galvanisch verzinkt ≥ 5 μm
Scheibe	Galvanisch verzinkt ≥ 5 μm
Scriebe	Feuerverzinkt ≥ 45 μm
	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der
Mutter	Gewindestange
	Galvanisch verzinkt \geq 5 μ m, Feuerverzinkt \geq 45 μ m
Stahlteile aus nichtroste	ndem Stahl
Gewindestange,	Festigkeitsklasse 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$,
HAS-U-R,	Bruchdehnung (I ₀ =5d) > 8% duktil
HIT-V-R	Werkstoff 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362
	DIN EN 10088-1: 2014-12
Scheibe	Werkstoff 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362
Scheibe	DIN EN 10088-1: 2014-12
	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der
Mutter	Gewindestange
Ividite	Werkstoff 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362
	DIN EN 10088-1: 2014-12
Stahlteile aus hochkorro	
Gewindestange,	$f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$,
HAS-U-HCR,	Bruchdehnung (I ₀ =5d) > 8% duktil
HIT-V-HCR	Werkstoff 1.4529, 1.4565 DIN EN 10088-1: 2014-12
Scheibe	Werkstoff 1.4529, 1.4565 DIN EN 10088-1: 2014-12
	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der
Mutter	Gewindestange
	Werkstoff 1.4529, 1.4565 DIN EN 10088-1: 2014-12
Plastikteile	
Siebhülse	Rahmen: FPP 20T
HIT-SC	Netz: PA6.6 N500/200

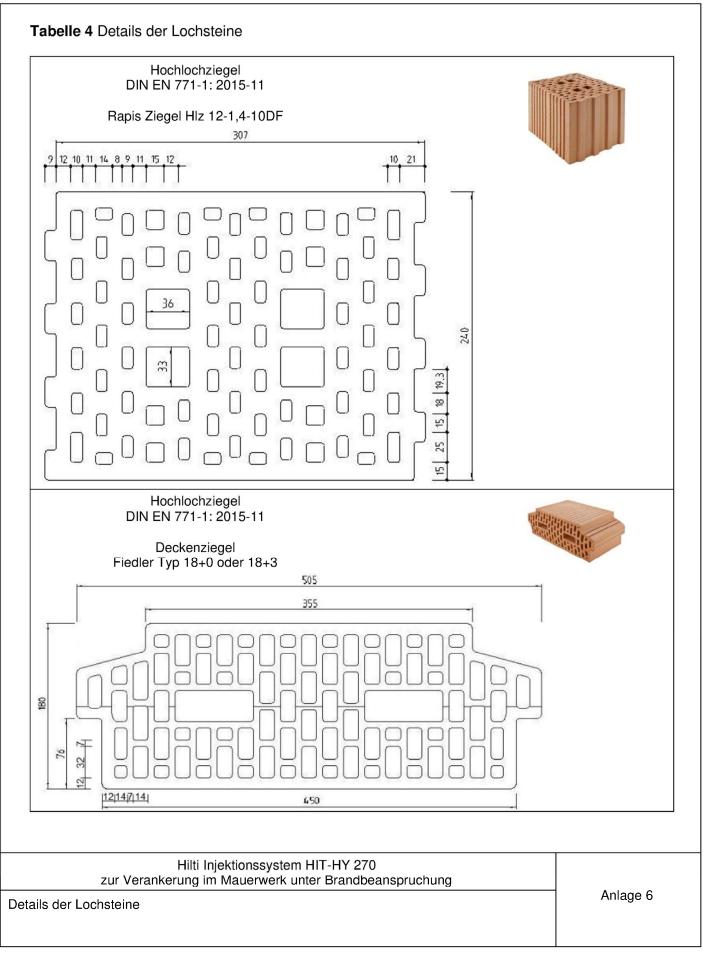
	Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Werkstoffe		Anlage 3

Tabelle 2 Übersicht der Mauersteine und Eigenschaften

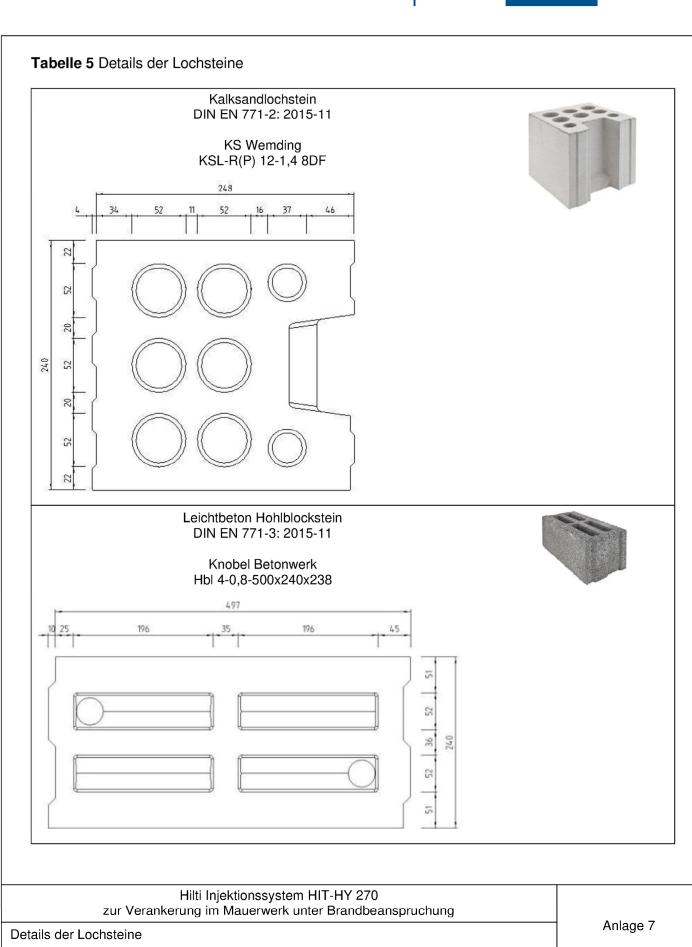
Art des Mauersteins	Foto	Steinabmessungen [mm]	Druckfestigkeit f _b ,ETA [N/mm²]	Rohdichte [kg/dm³]	Tabelle
		≥ 240x115x52	20/281)	2,0	20
Vollziegel DIN EN 771-1:2015-11		≥ 240x115x72	20	2,0	20
		≥ 240x115x113	20	2,0	20
Kalksandvollstein		≥ 240x115x113	12/20 ²⁾ /28	2,0	21/22
DIN EN 771-2:2015-11		≥ 248x240x248	12/20/28	2,0	21/22
Lochziegel DIN EN 771-1:2015-11		300x240x238	12 / 20	1,4	16/17
Kalksandlochstein DIN EN 771-2:2015-11	333	248x240x248	12 / 16 ²⁾	1,4	18/19
Leichtbeton Hohlblockstein DIN EN 771-3:2015-11		495x240X238	2/6	0,7	23
Lochziegel DIN EN 771-1:2015-11 Deckenstein		250x510x180	DIN EN 15037-3:2011-07 Klasse R2	1,0	24

Hilti Injektionssystem HIT-HY 270	
zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Übersicht der Mauersteine und Eigenschaften	Anlage 4

¹⁾ Hinweis: Für Kaltbemessung Druckfestigkeit 20 N/mm² verwenden 2) Hinweis: Für Kaltbemessung Druckfestigkeit 12 N/mm² verwenden


Tabelle 3 Übersicht Befestigungselemente (inkl. Größen und Verankerungstiefen) und zugehörende Mauersteine

Art des Mauersteins	Foto	HAS-U ¹)	HIT-IC	HAS-U 1) + HIT-SC	HIT-IC + HIT-SC
		M8 bis M12 h _{ef} = 80 mm bis 300 mm	M8 bis M12	M8 bis M12 h _{ef} = 80 mm bis 160 mm	M8 bis M12
Vollziegel		M8 bis M12 $h_{ef} = 80 \text{ mm}$ bis 300 mm	M8 bis M12	M8 bis M12 h _{ef} = 80 mm bis 160 mm	M8 bis M12
		M8 bis M12 h _{ef} = 80 mm bis 300 mm	M8 bis M12	M8 bis M12 h _{ef} = 80 mm bis 160 mm	M8 bis M12
Kalksand-		M8 bis M12 h _{ef} = 80 mm bis 300 mm	M8 bis M12	M8 bis M12 h _{ef} = 80 mm bis 160 mm	M8 bis M12
vollstein		M8 bis M12 h _{ef} = 80 mm bis 300 mm	M8 bis M12	M8 bis M12 h _{ef} = 80 mm bis 160 mm	M8 bis M12
Lochziegel		-	-	M8 bis M12 h _{ef} = 80 mm bis 160 mm	M8 bis M12
Kalksand- lochstein	THE STATE OF THE S	-	-	M8 bis M12 h _{ef} = 80 mm bis 160 mm	M8 bis M12
Leichtbeton Hohlblockstein		-	-	M8 bis M12 h _{ef} = 130 mm bis 160 mm	M8 bis M12
Lochziegel Deckenstein		-	-	M6 h _{ef} = 80 mm	-


¹⁾ Handelsübliche Gewindestangen und HIT-V können ebenfalls verwendet werden.

Hilti Injektionssystem HIT-HY 270	
zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Übersicht Befestigungselemente (inkl. Größen und Verankerungstiefen) und zugehörende Mauersteine	Anlage 5

Tabelle 6 Montagekennwerte Gewindestange, HIT-V-..., HAS-U-... mit einer Siebhülse HIT-SC für Lochstein und Vollstein

Gewindestange	mm	memmin []m	M6	M8	M10	M12
mit HIT-SC	88		12x85	16x85	16x85	18x85
Bohrernenndurchmesser	d ₀	[mm]	12	16	16	18
Bohrlochtiefe	h ₀	[mm]	95	95	95	95
Effektive Verankerungstiefe	h _{ef}	[mm]	80	80	80	80
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	7	9	12	14
Minimale Wanddicke Vollstein	h _{min}	[mm]	175	175	175	175
Minimale Wanddicke Lochstein	h_{min}	[mm]	240	240	240	240
Bürste HIT-RB	-	[-]	12	16	16	18
Maximales Anzugsdrehmoment	T _{max}	[Nm]	0	3	4	6

Tabelle 7 Montagekennwerte Gewindestange, HIT-V-..., HAS-U-... mit zwei Siebhülsen HIT-SC für Lochstein und Vollstein für große Verankerungstiefen

Gewindestange	mmonomin [] w		M8		M10		M12	
mit HIT-SC	€	#	16x50	16x85	16x50	16x85	18x50	18x85
	+		+ 16x85	+ 16x85	+ 16x85	+ 16x85	+ 18x85	+ 18x85
Bohrernenndurchmesser	d ₀	[mm]	16	16	16	16	18	18
Bohrlochtiefe	h_0	[mm]	145	180	145	180	145	180
Effektive Verankerungstiefe	h _{ef}	[mm]	130	160	130	160	130	160
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	9	9	12	12	14	14
Minimale Wanddicke Vollstein	h _{min}	[mm]	195	230	195	230	195	230
Minimale Wanddicke Lochstein	h _{min}	[mm]	240	240	240	240	240	240
Bürste HIT-RB	-	[-]	16	16	16	16	18	18
Maximales Anzugsdrehmoment	T_{max}	[Nm]	3	3	4	4	6	6

Tabelle 8 Montagekennwerte Innengewindehülse HIT-IC... mit Siebhülse HIT-SC für Lochstein und Vollstein

HIT-IC			M8x80	M10x80	M12x80
mit HIT-SC	€	⇒	16x85	18x85	22x85
Bohrernenndurchmesser	d_0	[mm]	16	18	22
Bohrlochtiefe	h_0	[mm]	95	95	95
Effektive Verankerungstiefe	h _{ef}	[mm]	80	80	80
Einschraubtiefe	h₅	[mm]	875	1075	1275
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	12	14
Minimale Wanddicke Vollstein	h _{min}	[mm]	175	175	175
Minimale Wanddicke Lochstein	h _{min}	[mm]	240	240	240
Bürste HIT-RB	-	[-]	16	18	22
Maximales Anzugsdrehmoment	T_{max}	[Nm]	3	4	6

Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Montagekennwerte	Anlage 8

 Tabelle 9
 Montagekennwerte Gewindestange, HIT-V-..., HAS-U-... im Vollstein

Gewindestange	DIRECTRIC	mm[]m	M8	M10	M12
Bohrernenndurchmesser	d ₀	[mm]	10	12	14
Bohrlochtiefe = Effektive Verankerungstiefe	h ₀ = h _{ef}	[mm]	80300	80300	80300
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	9	12	14
Minimale Wanddicke	h_{min}	[mm]	175	175	175
Bürste HIT-RB		[-]	10	12	14
Maximales Anzugsdrehmoment	T_{max}	[Nm]	5	8	10

Tabelle 10 Montagekennwerte Innengewindehülse HIT-IC... in Vollstein

HIT-IC			M8x80	M10x80	M12x80
Bohrernenndurchmesser	d_0	[mm]	14	16	18
Bohrlochtiefe = Effektive Verankerungstiefe	h ₀ = h _{ef}	[mm]	80	80	80
Einschraubtiefe	hs	[mm]	875	1075	1275
Maximaler Durchmesser des Durchgangslochs im Anbauteil	df	[mm]	9	12	14
Minimale Wanddicke	h_{min}	[mm]	175	175	175
Bürste HIT-RB	-	[-]	14	16	18
Maximales Anzugsdrehmoment	T_{max}	[Nm]	5	8	10

Tabelle 11 Montagekennwerte Gewindestange, HIT-V-..., HAS-U-... mit zwei Siebhülsen HIT-SC für die Montage durch das Anbauteil und/oder durch eine nichttragende Schicht für Lochstein und Vollstein

Gewindestange	минии	m[]m	N	18	M10		M12		
	€	=	16x50	16x85	16x50	16x85	18x50	18x85	
mit HIT-SC	4	-	+	+	+	+	+	+	
	€	⇒	16x85	16x85	16x85	16x85	18x85	18x85	
Bohrernenndurchmesser	d_0	[mm]	16	16	16	16	18	18	
Bohrlochtiefe	h_0	[mm]	145	180	145	180	145	180	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]	80	80	80	80	80	80	
Max. Dicke der nichttragenden Schicht und Anbauteildicke (Durchsteckmontage)	h _{p,max}	[mm]	50	80	50	80	50	80	
Max. Durchmesser des Durch	ngangsk	ochs im	Anbauteil						
Vorsteckmontage	d_{f1}	[mm]	9	9	12	12	14	14	
Durchsteckmontage	d_{f2}	[mm	17	17	17	17	19	19	
Minimale Wanddicke Vollstein	h _{min}	[mm]	175	175	175	175	175	175	
Minimale Wanddicke Lochlstein	h _{min}	[mm]	240	240	240	240	240	240	
Bürste HIT-RB	-	[-]	16	16	16	16	18	18	
Maximales Anzugsdrehmoment	T _{max}	[Nm]	3	3	4	4	6	6	

Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Montagekennwerte	Anlage 9

Tabelle 12: Maximale Verarbeitungszeit und minimale Aushärtezeit für Vollsteine 1)

	mperatu kerungs			arbeitungszeit ^{vork}	_	Aushärtezeit
5 °C	bis	9 °C	10	min	2,5	h
10 °C	bis	19 °C	7	min	1,5	h
20 °C	bis	29 °C	4	min	30	min
30 °C	bis	40 °C	1	min	20	min

Die Aushärtezeiten gelten nur für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Tabelle 13: Maximale Verarbeitungszeit und minimale Aushärtezeit¹⁾ für Lochsteine

Tabolio Torr	ADDITION TO THE MAN TO THE TOTAL BOTTON TO THE							
	mperatu kerungs		_	Verarbeitungszeit Minimale Aushär t _{work} t _{cure}		aximale Verarbeitungszeit Minimale Aushärteze t _{work} t _{cure}		
-5 °C	bis	-1 °C	10	min	6	h		
0 °C	bis	4 °C	10	min	4	h		
5 °C	bis	9 °C	10	min	2,5	h		
10 °C	bis	19 °C	7	min	1,5	h		
20 °C	bis	29 °C	4	min	30	min		
30 °C	bis	40 °C	1	min	20	min		

¹⁾ Die Aushärtezeiten gelten nur für trockenen Verankerungsgrund.

Tabelle 14: Reinigungsalternativen

Handreinigung (MC):

zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 18$ mm und einer Bohrlochtiefe von $h_0 \le 100$ mm wird die Hilti-Handausblaspumpe empfohlen.

Druckluftreinigung (CAC):

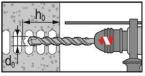
zum Ausblasen von Bohrlöchern bis zu einer Bohrlochtiefe von $h_0 \le 300$ mm wird eine Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm empfohlen.

Stahlbürste HIT-RB:

gemäß Tabelle 6 bis 11 in Abhängigkeit vom Bohrlochdurchmesser für MC und CAC.

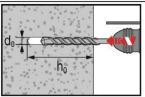
Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Aushärtezeiten und Reinigungsalternativen	Anlage 10

In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.



Montageanweisung

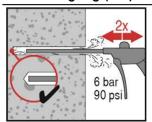
Bohrlocherstellung


Wenn beim Bohren über die gesamte Bohrlochtiefe (z.B. in nicht verfüllten Stoßfugen) kein nennenswerter Bohrwiderstand spürbar ist, so ist diese Setzposition zu verwerfen.

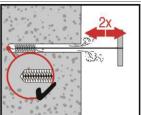
Bohrverfahren

Im Hohlstein (Nutzungskategorie c): Drehbohren

Bohrloch mit Bohrhammer im Drehmodus, unter Verwendung des passenden Bohrerdurchmessers, auf die richtige Bohrtiefe erstellen.

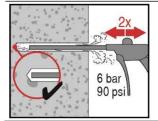

Im Vollstein (Nutzungskategorie b): Hammerbohren

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers, auf die richtige Bohrtiefe erstellen.


Bohrlochreinigung

Unmittelbar vor dem Setzen des Dübels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein. Schlechte Bohrlochreinigung = geringe Traglasten.

Handreinigung (MC) oder Druckluftreinigung (CAC) für Lochsteine und Vollsteine



Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit der Hilti Handpumpe (Bohrlochdurchmesser $d_0 \le 18$ mm und Bohrlochtiefe bis $h_0 = 100$ mm) oder ölfreier Druckluft (min. 6 bar bei 6 m³/h; Bohrlochtiefe bis $h_0 = 300$ mm) ausblasen, bis die rückströmende Luft staubfrei ist. Falls notwendig Verlängerung verwenden.

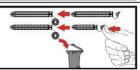
2-mal mit Stahlbürste in passender Größe (siehe Tabelle 6 bis 11) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung).

Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürste $\varnothing \ge$ Bohrloch \varnothing) – falls nicht, ist die Bürste zu klein und muss durch eine geeignete Bürste ersetzt werden.

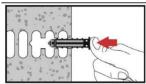

Bohrloch erneut mit der Hilti Handpumpe oder Druckluft 2-mal ausblasen, bis die rückströmende Luft staubfrei ist.

Hilti Injektionssystem HIT-HY 270
zur Verankerung im Mauerwerk unter Brandbeanspruchung

Montageanweisung

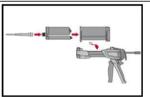


Injektionsvorbereitung bei Mauerwerk mit Lochanteil und Hohlräumen: Montage mit Siebhülse HIT-SC


Einzelsiebhülse HIT-SC

Kappe aufstecken

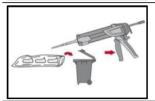
Zwei Siebhülsen HIT-SC


Siebhülsen zusammenstecken und überflüssige Kappe entsorgen. Beachten, dass im Falle von unterschiedlichen Siebhülsenlängen die kurze Siebhülse in die lange Siebhülse gesteckt wird.

Siebhülse manuell einschieben.

Bei der Verwendung von zwei Siebhülsen muss die Längere zuerst eingeschoben werden.

Für alle Anwendungen

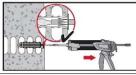


Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Den Mischer unter keinen Umständen verändern.

Bedienungsanleitung des Auspressgerätes und des Mörtels befolgen. Prüfen der Kassette und des Foliengebindes auf einwandfreie Funktion.

Kein beschädigtes Gebinde / Kassette verwenden.

Foliengebinde in die Kassette einführen und Kassette in Auspressgerät einsetzen.

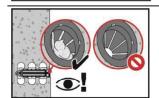

Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden. Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:

2 Hübe bei 330 ml Foliengebinde,

3 Hübe bei 500 ml Foliengebinde.

Injektion des Mörtels ohne Luftblasen zu bilden

Montage mit Siebhülse HIT-SC


Einzelsiebhülse HIT-SC

Den Mischer ca. 1 cm in die Kappe einschieben. Die gemäß Tabelle 6 bis 11 angegebene Mörtelmenge injizieren. Mörtel muss aus der Kappe austreten.

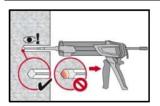
Zwei Siebhülsen HIT-SC

Mischerverlängerung bei der Montage von zwei Siebhülsen verwenden. Den Mischer ca. 1 cm durch die Spitze der Siebhülse "2" einschieben. Die gemäß Tabelle 6 bis 11 angegebene Mörtelmenge in die Siebhülse "1" injizieren. Mischer zurückziehen, bis er 1 cm in der Kappe der Siebhülse "2" steckt und Mörtel, wie vorher beschrieben, in die Siebhülse "2" injizieren.

Kontrolle der injizierten Mörtelmenge. Der Mörtel muss aus der Kappe ausgetreten sein.

Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.

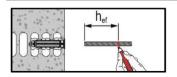
Hilti Injektionssystem HIT-HY 270
zur Verankerung im Mauerwerk unter Brandbeanspruchung


Montageanweisung

Anlage 12

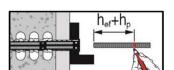
794078 20 1 21 3-80/19

Vollsteine: Montage ohne Siebhülse


Injizieren des Mörtels vom Bohrlochgrund und während jedes Hubes den Mischer zurückziehen.

Das Bohrloch zu ca. 2/3 verfüllen. Nach dem Einsetzen des Befestigungselementes muss der Ringspalt zwischen Dübel und Untergrund, über die gesamte Verankerungstiefe, vollständig mit Mörtel ausgefüllt sein.

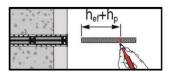
Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.


Setzen des Befestigungselementes:

Vor der Montage sicherstellen, dass das Element trocken und frei von Öl und anderen Verunreinigungen ist.

HIT-V-..., HAS-U-... oder HIT-IC in Lochstein und Vollstein: Vorsteckmontage

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit twork abgelaufen ist. Verarbeitungszeit twork siehe Tabelle 12 und Tabelle 13.

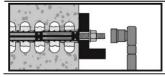


HIT-V-..., HAS-U-... in Lochstein und Vollstein:

Montage durch das Anbauteil

oder durch die nichttragende Schicht und das Anbauteil

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit twork abgelaufen ist. Verarbeitungszeit twork siehe Tabelle 12 und Tabelle 13.



HIT-V-..., HAS-U-... in Lochstein und Vollstein: Montage durch die nichttragende Schicht

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit twork abgelaufen ist.

Verarbeitungszeit twork siehe Tabelle 12 und Tabelle 13.

Belasten des Dübels

Nach Ablauf der Aushärtezeit t_{cure} kann der Dübel belastet werden. Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} nicht überschreiten.

Tabelle 15: Zugehörige Achs- und Randabstände Mauerwerke unter Brandbeanspruch

			M6 M8 M10 M12					
Randabstand	Cmin	[mm]	2 x h _{ef}					
Achsabstand	Scr	[mm]		4 x h _{ef}				
Achsabstand	scr⊥	[mm]		4 X	l lef			

Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Reinigungsalternativen	Anlage 13

Tabelle 16: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270, **Lochziegel, unverputzt** für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm²]				≥ 12			≥ 20	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]			8	0		
R30	$F_{Rk,fi}$	[kN]	0,34	0,34	0,34	0,46	0,46	0,46
R60	$F_{Rk,fi}$	[kN]	0,21	0,21	0,21	0,28	0,28	0,28
R90	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]	130					
R30	$F_{Rk,fi}$	[kN]	0,92	1,29	1,72	0,92	1,51	2,25
R60	$F_{Rk,fi}$	[kN]	0,66	0,92	1,22	0,68	1,09	1,60
R90	$F_{Rk,fi}$	[kN]	0,40	0,40	0,40	0,45	0,45	0,45
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-

Tabelle 17: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270, **Lochziegel, verputzt** für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm²]				≥ 12	•		≥ 20	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]			≥	80		
R30	$F_{Rk,fi}$	[kN]	0,34	0,34	0,34	0,46	0,46	0,46
R60	$F_{Rk,fi}$	[kN]	0,21	0,21	0,21	0,28	0,28	0,28
R90	F _{Rk,fi}	[kN]	0,08	0,08	0,08	0,10	0,10	0,10
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]	≥ 130					
R30	$F_{Rk,fi}$	[kN]	0,92	1,29	1,72	0,92	1,50	2,25
R60	$F_{Rk,fi}$	[kN]	0,66	0,92	1,22	0,68	1,09	1,60
R90	$F_{Rk,fi}$	[kN]	0,40	0,54	0,71	0,45	0,68	0,95
R120	$F_{Rk,fi}$	[kN]	0,27	0,36	0,46	0,33	0,47	0,62

Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270 im Lochziegel für Gewindestange, HIT-V, HAS-U und HIT-IC	Anlage 14

Tabelle 18: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270, **Kalksandlochstein, unverputzt** für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm²]				≥ 12			≥ 16	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]			≥	80		
R30	$F_{Rk,fi}$	[kN]	0,11	0,11	0,11	0,15	0,15	0,15
R60	$F_{Rk,fi}$	[kN]	-	-	0,06	-	-	0,09
R90	F _{Rk,fi}	[kN]	-	-	-	-	-	-
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]	≥ 130					
R30	F _{Rk,fi}	[kN]	0,11	0,11	0,11	0,15	0,15	0,15
R60	$F_{Rk,fi}$	[kN]	0,06	0,06	0,06	0,09	0,09	0,09
R90	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
R120	F _{Rk,fi}	[kN]	-	-	-	-	-	-

Tabelle 19: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270, **Kalksandlochstein, verputzt** für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm²]				≥ 12	•		≥ 16	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]			≥ :	80		
R30	$F_{Rk,fi}$	[kN]	0,11	0,11	0,11	0,15	0,15	0,15
R60	$F_{Rk,fi}$	[kN]	0,06	0,06	0,06	0,09	0,09	0,09
R90	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]	≥ 130					
R30	$F_{Rk,fi}$	[kN]	0,11	0,11	0,11	0,15	0,15	0,15
R60	$F_{Rk,fi}$	[kN]	0,06	0,06	0,06	0,09	0,09	0,09
R90	$F_{Rk,fi}$	[kN]	=	-	-	-	-	-
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-

Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung	
Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270 im Kalksandlochstein für Gewindestange, HIT-V, HAS-U und HIT-IC	Anlage 15

Tabelle 20: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270,

Vollziegel, unverputzt und verputzt für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC mit und ohne Siebhülse HIT-SC

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm ²]				≥ 20			≥ 28	
Min. effektive Verankerungstiefe	$h_{\text{ef,min}}$	[mm]			≥ :	80		
R30	$F_{Rk,fi}$	[kN]	0,81	0,81	0,81	0,96	0,96	0,96
R60	$F_{Rk,fi}$	[kN]	0,26	0,26	0,26	0,30	0,30	0,30
R90	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-

Tabelle 21: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270,

Kalksandvollstein, unverputzt für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC mit und ohne Siebhülse HIT-SC

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm²]				≥ 12			≥ 20	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]			≥ :	80		
R30	$F_{Rk,fi}$	[kN]	0,15	0,15	0,15	0,15	0,15	0,15
R60	F _{Rk,fi}	[kN]	0,09	0,09	0,09	0,09	0,09	0,09
R90	$F_{Rk,fi}$	[kN]	-	-	-	-	-	=
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-

Tabelle 22: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270,

Kalksandvollstein, verputzt für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC mit und ohne Siebhülse HIT-SC

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm ²]				≥ 12			≥ 20	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]			≥ :	80		
R30	$F_{Rk,fi}$	[kN]	-	-	-	0,46	0,46	0,46
R60	$F_{Rk,fi}$	[kN]	-	-	-	0,28	0,28	0,28
R90	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
R120	F _{Rk,fi}	[kN]	-	-	-	-	-	-

Hilti Injektionssystem HIT-HY 270

zur Verankerung im Mauerwerk unter Brandbeanspruchung

Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270 im Vollziegel und Kalksandvollstein für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC

Tabelle 23: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270,

Leichtbeton-Hohlblocksteine, unverputzt und verputzt für Gewindestange, HIT-V-...,

 $\mathsf{HAS}\text{-}\mathsf{U}\text{-}\ldots\;\mathsf{und}\;\mathsf{HIT}\text{-}\mathsf{IC}$

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М8	M10	M12	М8	M10	M12
Druckfestigkeit f _b ,ETA [N/mm²]				≥ 2			≥ 6	
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]			≥ 1	30		
R30	$F_{Rk,fi}$	[kN]	0,47	0,47	0,47	0,92	0,92	0,92
R60	$F_{Rk,fi}$	[kN]	0,38	0,38	0,38	0,68	0,68	0,68
R90	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-
R120	$F_{Rk,fi}$	[kN]	-	-	-	-	-	-

Tabelle 24: Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270, **Lochziegel Deckenstein, unverputzt und verputzt** für Gewindestange, HIT-V-..., HAS-U-...

Charakteristischer Feuerwiderstand für alle Lastrichtungen			М6
Druckfestigkeit f _b ,ETA [N/mm ²]			≥ R2
Min. effektive Verankerungstiefe	$h_{\text{ef},\text{min}}$	[mm]	≥ 80
R30	$F_{Rk,fi}$	[kN]	0,11
R60	$F_{Rk,fi}$	[kN]	-
R90	$F_{Rk,fi}$	[kN]	-
R120	$F_{Rk,fi}$	[kN]	-

Hilti Injektionssystem HIT-HY 270 zur Verankerung im Mauerwerk unter Brandbeanspruchung

Charakteristischer Feuerwiderstand für Injektionssystem Hilti HIT-HY 270 im Leichtbeton-Hohlblocksteine und Lochziegel Deckenstein für Gewindestange, HIT-V-..., HAS-U-... und HIT-IC